Here are some practical AI projects you can integrate into your website, courtesy of Grok. These projects will not only enhance a website, but they can also help build a portfolio as an aspiring AI engineer. These projects are tied to familiar technologies like Python and Flask, common add-ins like Bootstrap, and AI technologies like machine learning. The projects are actionable, with a mix of beginner-friendly and intermediate challenges.
You can find a summary of the projects and links to the technologies employed at the bottom of the page.
Upgrade the basic chatbot to maintain conversation history and respond contextually. Users get a smarter assistant (e.g., "What"s AI?" ? "Can you explain neural networks?" keeps the thread). Add to the bottom-right of a site for visitor support.
from flask import Flask, request, jsonify
from transformers import AutoModelForCausalLM, AutoTokenizer
app = Flask(__name__)
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
chat_history = []
@app.route('/chat', methods=['POST'])
def chat():
user_input = request.json.get('message')
chat_history.append(user_input)
input_text = " || ".join(chat_history[-3:]) + tokenizer.eos_token # Last 3 messages
input_ids = tokenizer.encode(input_text, return_tensors="pt")
response_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
chat_history.append(response)
return jsonify({'response': response})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
Update the frontend to display the full conversation. For an enhancement, add English/Spanish toggle using
i18next.
Skills Gained: NLP, API design, state management.
Suggest articles, tools, or resources based on user behavior or preferences. Personalizes the site experience (e.g., "Liked an AI ethics article? Here"s more!"). Perfect for a blog or resource hub.
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
articles = ["AI Basics", "Deep Learning Explained", "Ethics in AI"]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(articles)
similarity = cosine_similarity(tfidf_matrix)
def recommend(index):
similar = similarity[index]
return [articles[i] for i in similar.argsort()[-2:][::-1]]
print(recommend(0)) # Suggests based on "AI Basics"
<div class="card">
<div class="card-body">
<h5 class="card-title">Recommended for You</h5>
<p id="recommendation"></p>
</div>
</div>
<script>
fetch('/recommend?index=0')
.then(response => response.json())
.then(data => document.getElementById('recommendation').textContent =
data.join(', '));
</script>
Enhancement: Track clicks with JavaScript to refine recommendations over time.
Skills Gained: Machine learning, data processing, front-end integration.
Sentiment analysis tools use natural language processing to analyse text data, determining the emotional tone behind it. This project involves user feedback comments and AI to analyze sentiment (positive, negative, neutral). Gives site owners insights into user opinions automatically. Add to a "Contact" or "Feedback" page.
from flask import Flask, request, jsonify
from transformers import pipeline
app = Flask(__name__)
sentiment_analyzer = pipeline("sentiment-analysis")
@app.route('/feedback', methods=['POST'])
def feedback():
text = request.json.get('feedback')
result = sentiment_analyzer(text)[0]
return jsonify({'sentiment': result['label'], 'score': result['score']})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
<form id="feedback-form" class="mt-3">
<textarea class="form-control" id="feedback" placeholder="Your
thoughts..."></textarea>
<button type="submit" class="btn btn-primary mt-2">Submit</button>
<p id="result"></p>
</form>
<script>
document.getElementById('feedback-form').addEventListener('submit', async (e) =>
{
e.preventDefault();
const feedback = document.getElementById('feedback').value;
const response = await fetch('/feedback', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ feedback })
});
const data = await response.json();
document.getElementById('result').textContent = `Sentiment: ${data.sentiment}
(${data.score})`;
});
</script>
Enhancement: Store results in a database (e.g., SQLite) for later analysis.
Skills Gained: NLP, UI design, data storage.
Let users upload images, and use AI to identify objects or categorize them. Interactive and showcases computer vision. Could be a demo feature on an AI-focused site.
from flask import Flask, request, jsonify
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2,
preprocess_input, decode_predictions
from PIL import Image
import numpy as np
app = Flask(__name__)
model = MobileNetV2(weights='imagenet')
@app.route('/upload', methods=['POST'])
def upload():
file = request.files['image']
img = Image.open(file).resize((224, 224))
img_array = np.array(img)[np.newaxis, ...]
img_array = preprocess_input(img_array)
preds = model.predict(img_array)
results = decode_predictions(preds, top=3)[0]
return jsonify [{'label': label, 'probability': float(prob)} for _, label, prob
in results])
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
<form id="upload-form" enctype="multipart/form-data" class="mt-3">
<input type="file" class="form-control" id="image" accept="image/*">
<button type="submit" class="btn btn-primary mt-2">Analyze</button>
<ul id="results"></ul>
</form>
<script>
document.getElementById('upload-form').addEventListener('submit', async (e) => {
e.preventDefault();
const formData = new FormData();
formData.append('image', document.getElementById('image').files[0]);
const response = await fetch('/upload', { method: 'POST', body: formData });
const data = await response.json();
const results = document.getElementById('results');
results.innerHTML = data.map(r => `<li>${r.label}:
${r.probability.toFixed(2)}</li>`).join('');
});
</script>
Enhancement: Add multilingual labels (e.g., Spanish translations of results).
Skills Gained: Computer vision, file handling, API integration.
Generate short text snippets (e.g., article intros) using AI when users click a button. Shows off generative AI in action. Great for a blog or creative section.
from flask import Flask, jsonify
from transformers import pipeline
app = Flask(__name__)
generator = pipeline('text-generation', model='gpt2')
@app.route('/generate', methods=['GET'])
def generate():
text = generator("AI is transforming", max_length=50,
num_return_sequences=1)[0]['generated_text']
return jsonify({'text': text})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
<button class="btn btn-primary" onclick="generateText()">Generate AI
Text</button>
<p id="generated"></p>
<script>
async function generateText() {
const response = await fetch('/generate');
const data = await response.json();
document.getElementById('generated').textContent = data.text;
}
</script>
Styling: Use Bootstrap classes for consistency (e.g., btn, card, form-control).
Deployment: Host on Heroku or AWS.
Create a dynamic quiz where AI generates questions and evaluates answers based on a topic (e.g., AI basics). Engages users interactively, perfect for educational or fun sites. Add to a "Learn AI" section.
from flask import Flask, jsonify
from transformers import pipeline
app = Flask(__name__)
generator = pipeline('text-generation', model='gpt2')
@app.route('/quiz', methods=['GET'])
def quiz():
prompt = "Generate a question about artificial intelligence: "
question = generator(prompt, max_length=50,
num_return_sequences=1)[0]['generated_text'].split(': ')[1]
return jsonify({'question': question, 'answer': 'Yes'}) # Simplified answer
logic
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
<div class="container mt-3">
<h3>AI Quiz</h3>
<p id="question"></p>
<input type="text" class="form-control" id="answer" placeholder="Your answer">
<button class="btn btn-primary mt-2" onclick="checkAnswer()">Submit</button>
<p id="result"></p>
</div>
<script>
async function loadQuestion() {
const response = await fetch('/quiz');
const data = await response.json();
document.getElementById('question').textContent = data.question;
}
async function checkAnswer() {
const userAnswer = document.getElementById('answer').value;
const result = userAnswer.toLowerCase().includes('yes') ? 'Correct!' : 'Try
again!';
document.getElementById('result').textContent = result;
}
loadQuestion();
</script>
Enhancement: Use NLP to evaluate free-text answers (e.g., compare to a keyword
list) or add multilingual questions.
Skills Gained: Generative AI, user interaction, basic NLP.
Let users paste an article or text, and AI generates a short summary instantly. Saves time for visitors, showcases NLP power. Useful for a news or blog section.
from flask import Flask, request, jsonify
from transformers import pipeline
app = Flask(__name__)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
@app.route('/summarize', methods=['POST'])
def summarize():
text = request.json.get('text')
summary = summarizer(text, max_length=100, min_length=30,
do_sample=False)[0]['summary_text']
return jsonify({'summary': summary})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
<div class="container mt-3">
<textarea class="form-control" id="input-text" rows="5" placeholder="Paste text
here..."></textarea>
<button class="btn btn-primary mt-2" onclick="summarize()">Summarize</button>
<p id="summary"></p>
</div>
<script>
async function summarize() {
const text = document.getElementById('input-text').value;
const response = await fetch('/summarize', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ text })
});
const data = await response.json();
document.getElementById('summary').textContent = data.summary;
}
</script>
Enhancement: Add a "Summarize in Spanish" option by switching models or
translating output.
Skills Gained: NLP, text processing, UI design.
Enhance a website search bar with AI-powered suggestions as users type. Improves navigation, feels snappy and smart. Upgrade the navbar search from our Bootstrap example.
from flask import Flask, request, jsonify
app = Flask(__name__)
suggestions = ["AI Basics", "Deep Learning", "Neural Networks", "Ethics in AI"]
@app.route('/autocomplete', methods=['GET'])
def autocomplete():
query = request.args.get('query', '').lower()
matches = [s for s in suggestions if query in s.lower()]
return jsonify(matches[:3])
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
<form class="d-flex ms-auto">
<input class="form-control me-2" type="text" id="search" placeholder="Search"
oninput="suggest()">
<div id="suggestions" class="dropdown-menu show"></div>
</form>
<script>
async function suggest() {
const query = document.getElementById('search').value;
if (query.length < 2) return;
const response = await fetch(`/autocomplete?query=${query}`);
const data = await response.json();
const suggestions = document.getElementById('suggestions');
suggestions.innerHTML = data.map(s => `<a
class="dropdown-item">${s}</a>`).join('');
}
</script>
Enhancement: Use a pre-trained embeddings model (e.g., SentenceTransformers) to
suggest based on meaning, not just keywords.
Skills Gained: Real-time processing, UI responsiveness, basic ML.
Add a voice interface where users can speak to an AI (e.g., ask questions) via the website. Futuristic and accessible, great for hands-free use. A standout feature for tech demos.
<div class="container mt-3">
<button class="btn btn-primary" onclick="startListening()">Start
Talking</button>
<p id="transcript"></p>
<p id="response"></p>
</div>
<script>
const recognition = new (window.SpeechRecognition ||
window.webkitSpeechRecognition)();
recognition.lang = 'en-US'; // Or 'es-ES' for Spanish
recognition.onresult = async (event) => {
const transcript = event.results[0][0].transcript;
document.getElementById('transcript').textContent = `You said: ${transcript}`;
const response = await fetch('/chat', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ message: transcript })
});
const data = await response.json();
document.getElementById('response').textContent = `AI: ${data.response}`;
};
function startListening() { recognition.start(); }
</script>
Enhancement: Add text-to-speech (e.g., SpeechSynthesis) so the AI talks back.
Skills Gained: Speech recognition, API integration, accessibility.
Use AI to suggest and apply website themes (e.g., light/dark) based on user preferences or time of day. Subtle but smart personalization. Enhances user experience across the site.
from flask import Flask, jsonify
import datetime
app = Flask(__name__)
@app.route('/theme', methods=['GET'])
def theme():
hour = datetime.datetime.now().hour
theme = 'dark' if 18 <= hour <= 6 else 'light' # Night = dark
return jsonify({'theme': theme})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
<nav class="navbar navbar-expand-lg" id="navbar">
<a class="navbar-brand" href="#">AI World</a>
<button class="btn btn-secondary ms-auto" onclick="loadTheme()">Switch
Theme</button>
</nav>
<script>
async function loadTheme() {
const response = await fetch('/theme');
const data = await response.json();
const navbar = document.getElementById('navbar');
navbar.className = `navbar navbar-expand-lg navbar-${data.theme}
bg-${data.theme}`;
document.body.style.backgroundColor = data.theme === 'dark' ? '#333' : '#fff';
}
loadTheme();
</script>
Multilingual: Extend with English/Spanish using i18next or manual toggles.
Portfolio Boost: Deploy these on a site or GitHub to show off your AI
engineering chops.
AI-Powered Chatbot with Context Awareness
Upgrade a basic chatbot to maintain conversation history and
respond contextually. Users get a smarter assistant (e.g., What is AI? or Can
you explain neural networks).
Skills Gained: NLP, API design, state management.
Content Recommendation Engine
Suggest articles, tools, or resources based on user behavior or preferences.
Personalizes the site experience (e.g., Liked an AI ethics article? Here"s
more!).
Skills Gained: Machine learning, data processing, front-end integration.
Sentiment Analysis Feedback Tool
Let users submit feedback and use AI to analyze sentiment (positive, negative,
neutral). Gives site owners insights into user opinions automatically.
Skills Gained: NLP, UI design, data storage.
Image Recognition Upload Tool
Let users upload images, and use AI to identify objects or categorize them.
Interactive and showcases computer vision. Could be a demo feature on an
AI-focused site.
Skills Gained: Computer vision, file handling, API integration.
AI-Generated Content Preview
Generate short text snippets (e.g., article intros) using AI when users click a
button. Shows off generative AI in action. Great for a blog or creative section.
Skills Gained: Generative AI, UI interactivity.
AI-Powered Quiz Generator
Create a dynamic quiz where AI generates questions and evaluates answers based
on a topic (e.g., AI basics). Engages users interactively, perfect for
educational or fun sites.
Skills Gained: Generative AI, user interaction, basic NLP.
Real-Time Text Summarizer
Let users paste an article or text, and AI generates a short summary instantly.
Saves time for visitors, showcases NLP power. Useful for a news or blog section.
Skills Gained: NLP, text processing, UI design.
AI-Driven Search Autocomplete
Enhance a website search bar with AI-powered suggestions as users type. Improves
navigation, feels snappy and smart. Upgrade the navbar search from Bootstrap
CSS.
Skills Gained: Real-time processing, UI responsiveness, basic ML.
Voice-Activated AI Assistant
Add a voice interface where users can ask questions to an AI via the website.
Futuristic and accessible, great for hands-free use. A great feature for tech
demos.
Skills Gained: UI manipulation, basic ML, time-based logic.
AI-Personalized Theme Switcher
Use AI to suggest and apply website themes, light or dark, based on user
preferences or time of day. Subtle but smart personalization. Enhances user
experience across the site.
Skills Gained: UI manipulation, basic ML, time-based logic.
Python programming language
Flask web framework
Hugging Face platform for machine learning
Scikit-learn machine learning in Python
JavaScript programming language
Bootstrap CSS provider
TensorFlow platform for machine learning